DSDP5 User Guide — Software for Semidefinite Programming

نویسندگان

  • Steven J. Benson
  • Yinyu Ye
چکیده

DSDP implements the dual-scaling algorithm for semidefinite programming. The source code if this interior-point solver, written entirely in ANSI C, is freely available. The solver can be used as a subroutine library, as a function within the MATLAB environment, or as an executable that reads and writes to files. Initiated in 1997, DSDP has developed into an efficient and robust general purpose solver for semidefinite programming. Although the solver is written with semidefinite programming in mind, it can also be used for linear programming and other constraint cones. The features of DSDP include: • a robust algorithm with a convergence proof and polynomially bounded complexity under mild assumptions on the data, • primal and dual solutions, • feasible solutions when they exist or approximate certificates of infeasibity, • initial points that can be feasible or infeasible, • relatively low memory requirements for an interior-point method, • sparse and low-rank data structures, • extensibility that allows applications to customize the solver and improve its performance, • a subroutine library that enables it to be linked to larger applications, • scalable performance for large problems on parallel architectures, and • a well documented interface and examples of its use. The package has been used in many applications and tested for efficiency, robustness, and ease of use. We welcome and encourage further use under the terms of the license included in the distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User guide for QSDP-0 – a Matlab software package for convex quadratic semidefinite programming

This software is designed to solve a convex quadratic semidefinite programming (QSDP) problem, possibly with a log-determinant term. It employs an infeasible primal-dual predictor-corrector path-following method using the Nesterov-Todd search direction. The basic code is written in Matlab, but key subroutines in C are incorporated via Mex interface. It also uses functions in the software for li...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Parallel Primal-dual Interior-point Methods for Semidefinite Programs B-415 Parallel Primal-dual Interior-point Methods for Semidefinite Programs

The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our two software packages S...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005